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Abstract
Exact eigen-energies and the corresponding wavefunctions of an interacting
sl-boson system in a U(2l + 1)←→ O(2l + 2) transitional region are obtained
by using the Bethe ansatz within an infinite-dimensional Lie algebra. A
numerical algorithm for solving the Bethe ansatz equations is introduced. As
an example, spectra for the U(3) ←→ O(4) transitional region of the U(4)

Vibron model are analysed.

PACS numbers: 03.65.Fd, 03.30.Jp, 21.60.−n, 33.20.−t

1. Introduction

Many physical systems can be described, at least approximately, by interacting bosons.
Examples can be found in interacting Bose–Einstein condensates [1, 2], low-energy nuclear
models [3–5] and theories of molecular structure [6–8]. For example, in the interacting
sd-boson model for nuclei valence nucleon pairs are treated approximately as s and d bosons. In
this case the Hamiltonian of the system is constructed in terms of U(6) generators. Generally,
as an extension, the largest dynamical symmetry group generated by s and l (l = p, d, f, . . .)
boson operators is U(2l + 2) when the total number of bosons is a conserved quantity. If only
one- and two-body interactions are introduced, and the angular momentum of the sl-boson
system is conserved, the Hamiltonian of the model can be expressed in terms of a linear
combination of the first- and second-order Casimir operators of subalgebras contained in all
possible chains of the reduction U(2l + 2) ↓ O(3),

Ĥ = A1Ĉ1(U(2l + 2)) + A2Ĉ2(U(2l + 1)) + A3Ĉ2(O(2l + 2))

+ · · · + BĈ2(O(2l + 1)) + CĈ2(O(3)). (1.1)

In this paper, we only consider a special case, namely, when the Hamiltonian is
constructed out of a linear combination of the first- and second-order Casimir operators
of U(2l + 2), O(2l + 2), U(2l + 1), O(2l + 1) and O(3). Other possible chains in the reduction
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U(2l + 2) ↓ O(3) will not be considered. Specifically, those terms represented by the ellipsis
in (1.1), which represent Casimir operators up to second order of other subgroups of U(2l +2),
will not be taken into account. In this case the Hamiltonian can be diagonalized in one of the
following chains:

U(2l + 2)

↗ U(2l + 1)↘

↘ O(2l + 2)↗
O(2l + 1) ⊃ O(3). (1.2)

Obviously, (1.1) is diagonal under the U(2l + 2) ⊃ U(2l + 1) ⊃ O(2l + 1) ⊃ O(3) chain when
A3 = 0, while it is also diagonal under another chain U(2l + 2) ⊃ O(2l + 2) ⊃ O(2l + 1) ⊃
O(3) when A2 = 0. These two special cases are called the U(2l + 1) and O(2l + 2) limits,
respectively. If all the parameters are nonzero, the system is in the U(2l + 1)←→ O(2l + 2)

transitional region. Obviously, exact diagonalization of (1.1) in the transitional region is not
as easy as in either of the limits, especially when the dimension of the configuration space
is relatively large. However, the Hamiltonian (1.1) can still be diagonalized numerically by
using generators of the SU(1, 1) Lie algebra outlined in [9, 10].

Recently, it has been pointed out that exact solutions of the interacting sd-boson model in
the U(5)←→ O(6) transitional region can also be obtained by using an algebraic Bethe ansatz
within an infinite-dimensional Lie algebraic approach [11]. A similar procedure discussing
s and d boson dominance in the interacting boson system was considered in [12]. Though
numerical matrix diagonalization of the Hamiltonian (1.1) is not difficult, the algebraic Bethe
ansatz procedure should be useful for similar quantum many-body problems, especially for
some problems where straightforward diagonalization becomes infeasible.

In this paper, the method outlined in [11] will be extended and applied to sl-boson systems,
which provides an example to illustrate the algebraic Bethe ansatz method. It should be pointed
out that the l = 1 case of the model is the U(4) vibron model proposed by Iachello et al in
describing rotation–vibration modes of diatomic and triatomic molecules [6–8] and α-cluster
excitations in nuclei [13]. In contrast with earlier applications, the method proposed in this
paper can be used to discuss transitional situations.

In section 2, an algebraic Bethe ansatz method for diagonalizing the Hamiltonian (1.1)
is introduced. Solutions of the latter are determined within the framework of an infinite-
dimensional Lie algebra. In section 3, a numerical algorithm for solving the Bethe ansatz
equations is presented. And in section 4, as an example, spectra of an sp-boson system in the
transitional region are considered.

2. SÛ (1, 1) algebra and exact solutions

The SUl(1, 1) generators can be constructed in terms of l-boson operators as

S+(l) = 1

2
l† · l† S−(l) = 1

2
l̃ · l̃ S0(l) = 1

2

(
l† · l̃ +

2l + 1

2

)
. (2.1)

Similarly, s-boson operators can be used to construct the SUs(1, 1) algebra, the generators of
which can be written as

S+(s) = 1
2 s†

2
S−(s) = 1

2 s2 S0(s) = 1
2

(
s†s + 1

2

)
. (2.2)

Furthermore, generators of the SUsl(1, 1) algebra can be constructed from both s- and l-boson
operators with

Sµ(sl) = Sµ(l)± Sµ(s) (2.3)

where µ = 0, +, −, and either the + or the − sign can be taken.
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As is well known the basis vectors of U(2l + 1) ⊃ O(2l + 1) and O(2l + 2) ⊃ O(2l + 1)

are also those of SUl(1, 1) ⊃ Ul(1) and SUsl(1, 1) ⊃ Usl(1), respectively [10, 11]. Their
duality relations are shown as follows:

|Nnlνn�LM〉 =
∣∣∣∣N, κl = 1

2

(
ν +

2l + 1

2

)
, µl = 1

2

(
nl +

2l + 1

2

)
, n�LM

〉
(2.4)

for basis vectors of U(2l + 1) ⊃ O(2l + 1) and those of SUl(1, 1) ⊃ Ul(1), where N, nl , ν, L
and M are quantum numbers of U(2l + 2), U(2l + 1), O(2l + 1), O(3) and O(2), respectively,
n� is an additional quantum number needed in the reduction O(2l + 1) ↓ O(3), κl and µl

are quantum numbers of SUl(1, 1) and Ul(1), respectively. Therefore, basis vectors of
U(2l + 2) ⊃ O(2l + 2) ⊃ O(2l + 1) ⊃ O(3) are also those of SUsl(1, 1) and SUl(1, 1),
simultaneously, which can be expressed as

|Nσνn�LM〉 =
∣∣∣∣N, κsl = 1

2
(σ + l + 1), µsl = 1

2
(N + l + 1), κl = 1

2

(
ν +

2l + 1

2

)
, n�LM

〉
(2.5)

where σ is the quantum number of O(2l + 2), κsl and µsl are the quantum numbers of
SUsl(1, 1) and its subalgebra Usl(1), respectively.

Next we introduce operators

S±n = c2n+1
s S±(s) + c2n+1

l S±(l) S0
n = c2n

s S0(s) + c2n
l S0(l) (2.6)

where cs and cl are real, and n can be taken to be 0,±1,±2, . . . . It can be verified that these
operators satisfy the following commutation relations:[

S0
m, S±n

] = ±S±m+n

[
S+

m, S−n
] = −2S0

m+n+1. (2.7)

According to the definitions
{
S

µ
m,µ = 0,±;m = 0,±1,±2, . . .

}
generate the affine Lie

algebra SÛ(1,1) without central extension.
Let |lw〉 be the lowest weight state of SÛ(1,1), which should satisfy

S−(s)|lw〉 = 0 S−(l)|lw〉 = 0. (2.8)

Since the total number of bosons, N, is a conserved quantity, and the basis vectors are restricted
under the subalgebra chain O(2l + 1) ⊃ O(3) ⊃ O(2), the lowest weight states satisfying
(2.8) are actually a set of basis vectors of U(2l + 2) ⊃ U(2l + 1) ⊃ O(2l + 1) ⊃ O(3) ⊃
O(2) with

|lw〉 =
∣∣∣∣∣N; κl = 1

2

(
ν +

2l + 1

2

)
, µl = 1

2

(
nl +

2l + 1

2

)
, κs = 1

2

(
νs +

1

2

)
,

µs = 1

2

(
ns +

1

2

)
; n�LM

〉
(2.9)

where N = ν + νs , nl = ν, ns = νs = 0 or 1. Hence, we have

S0
n|lw〉 = �0

n|lw〉 (2.10)

where

�0
n =

1

2

[
c2n
s

(
νs +

1

2

)
+ c2n

l

(
ν +

2l + 1

2

)]
. (2.11)

Using the generators of SÛ(1,1), we can construct a Hamiltonian for the U(2l + 1)←→
O(2l + 2) transitional region as

Ĥ = gS+
0 S−0 + αS0

1 + γ Ĉ2(O(2l + 1)) + δĈ2(O(3)) (2.12)
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where g, α, γ and δ are real parameters. It can be seen that (2.12) is equivalent to a Hamiltonian
in the O(2l + 2) limiting case when cs = cl , and to a Hamiltonian in the U(2l + 1) limiting
case when cs = 0 and cl �= 0. Hence, the general cs �= cl �= 0 cases correspond to the
U(2l + 1)←→ O(2l + 2) transitional situations. In the following, cl is fixed, and we allow cs

to vary within the closed interval [0, cl]. It should be pointed out that the first two terms in the
Hamiltonian (2.12) will become a special case of the generalized pairing Hamiltonian with
two orbits discussed in [14] when the SU(1, 1) generators Sµ(l) and Sµ(s) are replaced by
two sets of SU(2) generators for two different orbits, which is the extension of Richardson’s
pairing model discussed early in [15–18].

To diagonalize the Hamiltonian (2.12), we use the algebraic Bethe ansatz which implies
that eigenvectors of (2.12) may be expressed as

|k; νsνn�LM〉 = NS+(x1)S
+(x2) · · · S+(xk)|lw〉. (2.13)

In this expression S+(xi) (i = 1, 2, . . . , k) is a functional operator of S+(l) and S+(s) with
spectral parameter xi , since the subspace with fixed total number of bosons is spanned by
{(S+(l))k−µ(S+(s))µ|lw〉} (µ = 0, 1, 2, . . . , k), and N is a normalization factor. However, the
explicit form of S+(xi) and allowed values of xi in (2.13) need to be determined. To determine
the explicit functional form and allowed values of xi , we first expand (2.13) in terms of the
spectral parameters xi around xi ∼ 0,

|k; νsνn�LM〉 = N
∑
ni∈Z

an1an2 · · · ank
x

n1
1 x

n2
2 · · · xnk

k S+
n1

S+
n2
· · · S+

nk
|lw〉 (2.14)

where

ani
S+

ni
= 1

2π i

∮
0

dxix
ni

i S+(xi) (2.15)

is the Fourier–Laurent coefficient in the expansion of S+(xi). Directly solving the eigenvalue
problem of (2.12) with expansion (2.14), one gets two parts, of which the one proportional to
S+

0 is not of the original ansatz form given by (2.14), and should be set to zero, and the other
part can be written as(
ĥ− α�0

1

)∑
ni

an1an2 · · · ank
x

n1
1 x

n2
2 · · · xnk

k S+
n1
· · · S+

nk
|lw〉

= α
∑

µ

∑
ni

an1 · · · anµ−1anµ−1anµ+1 · · · ank

1

xµ

S+
n1
· · · S+

nk
|lw〉 (2.16)

where ĥ ≡ Ĥ − γ Ĉ2(O(2l + 1))− δĈ2(O(3)). Hence, one gets

h(k) − α�0
1 =

k∑
µ=1

αanµ−1

xµanµ

. (2.17)

Since h(k) should be an eigenvalue of ĥ, which should be nµ(µ = 1, 2, . . . , k) independent,
the only possible situation is that

anµ−1

anµ

= κµ (2.18)

for µ = 1, 2, . . . , k, where κµ is a µ-dependent constant. Conditions (2.18) are equivalent to
rescaling the spectral parameters xi by

yi = xi/κi. (2.19)

As a result of (2.19), one has

ani
x

ni

i = y
ni

i (2.20)
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for i = 1, 2, . . . , k, where a0 has been set to 1. Therefore, one can equivalently choose
ani
= 1. Hence, the explicit form of the functional S+(xi) is

S+(xi) = cs

1− c2
s xi

S+(s) +
cl

1− c2
l xi

S+(l). (2.21)

A similar form to (2.21) was first used by Gaudin as an ansatz in finding exact solutions of
a spin–spin interaction system [19], which is now proved to be a consistent operator form in
constructing the Bethe ansatz wavefunction (2.13) for the current interacting boson system.

Using the commutation relations[
S0

1 , S+(x)
] = 1

x
S+(x)− 1

x
S+

0

[[S−0 , S+(x)], S+(y)] = 2

x − y
(S+(x)− S+(y)) (2.22)

[S−0 , S+(x)] = c2
s S

0(s)

1− c2
s x

+
c2
l S

0(l)

1− c2
l xi

one can derive the eigenequation with(
ĥ− α�0

1

)
S+(x1) · · · S+(xk)|lw〉

= α
∑

i

S+(x1) · · ·S+(xi−1)

(
1

xi

S+(xi)− 1

xi

S+
0

)
S+(xi+1) · · · S+(xk)|lw〉

− gS+
0

∑
i

S+(x1) · · · S+(xi−1)S
+(xi+1) · · · S+(xk)

∑
j �=i

2

xi − xj

|lw〉

+ gS+
0

∑
i

(
c2
s

(
νs + 1

2

)
1− c2

s xi

+
c2
l

(
ν + 2l+1

2

)
1− c2

l xi

)
× S+(x1) · · ·S+(xi−1)S

+(xi+1) · · · S+(xk)|lw〉. (2.23)

In (2.23), terms proportional to S+
0 should be set to zero, which leads to a set of Bethe ansatz

equations that determines the spectral parameters xi :

α

xi

= gc2
s

(
νs + 1

2

)
1− c2

s xi

+
gc2

l

(
ν + 2l+1

2

)
1− c2

l xi

−
∑
j �=i

2g

xi − xj

i = 1, 2, . . . , k. (2.24)

Therefore, the infinite-dimensional algebraic expansion (2.14) along with the energy
eigenequation completely determines the functional S+(xi) and the possible values that the
spectral parameters xi can take on. It should be noted that even though the functional
S+(xi) is expanded around xi ∼ 0, the results should also be valid on the entire complex
plane because of the analytical behaviour of the eigenvectors. Therefore, results (2.21) and
(2.24) are solutions of the problem. The eigenvalues E(k) of the Hamiltonian (2.12) can be
expressed as

E(k) = h(k) + γ ν(ν + 2l − 1) + δL(L + 1) + α�0
1 (2.25)

where

h(k) =
k∑

i=1

α

xi

(2.26)

and

�0
1 =

1

2

[
c2
s

(
νs +

1

2

)
+ c2

l

(
ν +

2l + 1

2

)]
. (2.27)
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The quantum number k is related to the total number of bosons N by

N = 2k + νs + ν. (2.28)

Since the total number of bosons is conserved, the quantum number νs is not independent and
can be omitted. Generally, there are many different solutions of equation (2.24). If there are
p sets of solutions, an additional quantum number, ζ = 1, 2, . . . , p, should be introduced to
distinguish them from one another. Thus, wavefunction (2.13) is denoted as |k; ζ ; νn�LM〉.
It should be noted that for a k-pair excitation the spectral parameters xi have Sk symmetry.
Any permutations among different roots xi for i = 1, 2, . . . , k, are also solutions of (2.24),
which can be seen from (2.13) and (2.26). Therefore, in general, there will be k! different
solutions with the same eigen-energy and the corresponding wavefunction, the only difference
being that the spectral parameters, xi , are interchanged. These solutions should be regarded
as repeated roots with only one of them being a solution to the problem.

3. Numerical algorithm

Though eigen-energies and the corresponding wavefunctions can easily be determined for
limiting cases, in general cases equation (2.24) is a set of non-linear Bethe ansatz equations
(BAE) with k unknowns for a k-pair excitation. Obtaining the BAE for an exactly solvable
system is only half of the solution. The difficulty is that quantities of physical interest,
eigen-energies, etc, are expressed in terms of solutions of the BAE; and unfortunately, the
BAE are generally hard to solve. Many methods have been developed for extracting solutions
from these equations. A typical example for solving the BAE in the Hubbard model with
nearest neighbour hopping was shown in [20]. Exact solutions of a similar set of equations
to (2.24) were also discussed in [21] by Shastry and Dhar, which is a generalized version of
the Stieltjes problem [22]. In comparison to the generalized Stieltjes equation considered in
[21], there are more complicated terms, namely, the first two terms on the right-hand side
of equation (2.24) instead of a constant in the generalized Stieltjes equation. Therefore, the
method used in [21] is not directly applicable for finding exact solutions of (2.24). On the other
hand, an analysis similar to that used in [21] is helpful in understanding the behaviour of the
solutions. In this section, a useful and simple numerical algorithm for solving the BAE (2.24)
using MATHEMATICA will be outlined. Also, because of the Sk symmetry with respect to
permutations among the {x1, x2, . . . , xk}, in the following we exclude those solutions that can
be obtained by such root permutations, keeping only one since the others correspond to the
same eigen-energy and wavefunction.

Equation (2.24) can be rewritten as

β

yi

= c2
(
νs + 1

2

)
1− c2yi

+

(
ν + 2l+1

2

)
1− yi

−
∑
j �=i

2

yi − yj

i = 1, 2, . . . , k (3.1)

where

β = α/g c = cs/cl � 1 yi = c2
l xi . (3.2)

Firstly, we need to know how many different sets of solutions of equation (3.1) exist, excluding
those that can be obtained by root permutations of the Sk . Assume that the total number
of such solutions is p. The roots in (3.1) can then be arranged as

{
y

(ζ )

1 , y
(ζ )

2 , . . . , y
(ζ )

k

}
with ζ = 1, 2, . . . , p. Each set of roots corresponds to unique eigenvectors. These
eigenvectors span a subspace, which is called the diagonalized configuration subspace. The
sl-boson Hamiltonian is diagonal in the diagonalized configuration subspace. Let us use
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sqlr (q + r = k) symbolically to denote a k-pair excitation configuration with q s-boson
pairs and r l-boson pairs. Then these k + 1 k-pair excitations {skl0, sk−1l1, . . . , s0lk} span a
non-diagonalized configuration subspace, namely, the sl-boson Hamiltonian, in general, is not
diagonal in the non-diagonalizedconfiguration subspace. The basis vectors of the diagonalized
configuration subspace can be obtained from those of the non-diagonalized one by a unitary
transformation

SqLr =
∑
q ′r ′

a
qr

q ′r ′s
q ′ lr

′
(3.3)

where SqLr symbolically denotes the basis vectors of diagonalized configuration subspace,
a

qr

q ′r ′ is the transformation coefficient. The transformation must be an one-to-one full mapping
which cannot change dimension of the space. Thus, we come to a conclusion that the
dimension of the diagonalized configuration subspace is also k + 1, of which the basis vectors
are denoted symbolically as {SkL0, Sk−1L1, . . . , S0Lk}. Furthermore, it can easily be seen
that, for fixed i, equation (3.1) will become a polynomial equation of order k + 1, which should
have k + 1 different roots with xi �= xj for j �= i, and there are k! permutations among these
k different roots which will lead to k! solutions. This fact justifies that solutions of the Bethe
ansatz (3.1) are complete and equivalent to numerical diagonalization in the non-diagonalized
configuration space. Therefore, we have the following theorem:

Theorem. For k-pair excitation, besides solutions that can be obtained by root permutations
of the Sk , equation (3.1) has k + 1 different sets of solutions, namely p = k + 1.

According to this theorem, for a k-pair excitation equation (3.1) has (k + 1)! solutions, while
only k + 1 of them are solutions to the eigenvalue problem of the sl-boson system.

In what follows, we use a concrete example to show how to numerically find all roots of
equation (3.1). We take the sd-boson system with a k-pair excitation as an example, in which
the parameters νs = 1, νd = 2, β = 1000 and c = 0.2. Thus, equation (3.1) becomes

1000

yi

= 0.06

1− 0.04yi

+
4.5

1− yi

−
∑
j �=i

2

yi − yj

i = 1, 2, . . . , k. (3.4)

We use notation [k] to denote equation (3.4). It can be verified that solutions of [k + 1] can be
obtained by using FindRoot in MATHEMATICA from those for [k]. Starting from [k = 1],
which can easily be calculated by using Solve in MATHEMATICA, one can get solutions of
[k = 2]. Hence, an iterative procedure can be set up for finding solutions of [m + 1] from
those of [m]. Excluding roots that can be obtained from Sk symmetry, all inequivalent roots
up to [k = 4] are listed in table 1. It can easily be seen from table 1 that the roots of [k]
have the following properties: (1) the two roots of [k = 1] are very different; (2) two roots of
[k = 1] are fundamental because all other roots of [k] are in the vicinity of these two roots;
(3) assume that the bigger root of [k = 1] corresponds to the basis vector S and smaller one
corresponds to the basis vector D in the two-dimensional diagonalized configuration subspace.
Then, there are q relatively larger roots and r smaller roots of [k] corresponding to the basis
vector SqDr (q + r = k) in the k-dimensional diagonalized subspace. These properties can be
used to set up a procedure for finding all inequivalent roots of [k] using MATHEMATICA.

For example, as shown in table 1, the roots of [k = 2] and [k = 1] are related as follows:{
y

(1)
1 (k = 2) � y(1)(k = 1)

y
(1)

2 (k = 2) � y(1)(k = 1)

{
y

(2)
1 (k = 2) ∼ y(1)(k = 1)

y
(2)

2 (k = 2) ∼ y(2)(k = 1)

{
y

(3)
1 (k = 2) � y(2)(k = 1)

y
(3)

2 (k = 2) � y(2)(k = 1)

(3.5)
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Table 1. Solutions of the Bethe ansatz equation (3.4).

k N y
(ζ)
i (i = 1, 2, . . . , k; ζ = 1, 2, . . . , k + 1) SqDr (q + r = k)

1 5 y(1) = 24.9627 S1D0

y(2) = 0.995 52 S0D1{
y

(1)
1 = 24.9772

y
(1)
2 = 24.8988

S2D0

2 7

{
y

(2)
1 = 24.9628

y
(2)
2 = 0.995 52

S1D1{
y

(3)
1 = 0.996 86

y
(3)
2 = 0.992 21

S0D2


y

(1)
1 = 24.9835

y
(1)
2 = 24.9306

y
(1)
3 = 24.8261

S3D0

3 9


y

(2)
1 = 24.9772

y
(2)
2 = 24.899

y
(2)
3 = 0.995 519

S2D1


y

(3)
1 = 24.9629

y
(3)
2 = 0.996 86

y
(3)
3 = 0.992 21

S1D2


y

(4)
1 = 0.997 548

y
(4)
2 = 0.994 224

y
(4)
3 = 0.988 891

S0D3

{
y

(1)
1 = 24.987, y

(1)
2 = 24.9466

y
(1)
3 = 24.873, y

(1)
4 = 24.7488

S4D0{
y

(2)
1 = 24.9835, y

(2)
2 = 24.9307

y
(2)
3 = 24.8264, y

(2)
4 = 0.995 519

S3D1

4 11

{
y

(3)
1 = 24.9773, y

(3)
2 = 24.8992

y
(3)
3 = 0.996 86, y

(3)
4 = 0.992 209

S2D2{
y

(4)
1 = 24.963, y

(4)
2 = 0.997 548

y
(4)
3 = 0.994 224, y

(4)
4 = 0.988 89

S1D3{
y

(5)
1 = 0.997 979, y

(5)
2 = 0.995 339

y
(5)
3 = 0.991 45, y

(5)
4 = 0.985 541

S0D4

while the relationships of the roots of [k = 3] with those of [k = 2] are
y

(1)
1 (k = 3) � y

(1)
1 (k = 2)

y
(1)

2 (k = 2) < y
(1)

2 (k = 3) < y
(1)

1 (k = 2)

y
(1)

3 (k = 3) � y
(1)

2 (k = 2)


y

(2)
1 (k = 3) ∼ y

(1)
1 (k = 2)

y
(2)
2 (k = 3) ∼ y

(1)
2 (k = 2)

y
(2)

3 (k = 3) ∼ y
(2)

2 (k = 2)

(3.6)
y

(3)

1 (k = 3) ∼ y
(2)

1 (k = 2)

y
(3)

2 (k = 3) ∼ y
(3)

1 (k = 2)

y
(3)
3 (k = 3) ∼ y

(3)
2 (k = 2)


y

(4)

1 (k = 3) � y
(3)

1 (k = 2)

y
(3)

2 (k = 2) < y
(4)

2 (k = 3) < y
(3)

1 (k = 2)

y
(4)
3 (k = 3) � y

(3)
2 (k = 2)

.

From this type of analysis one sees that the roots of [k = m + 1] are in the vicinity of
those of [k = m]. Generally, the solutions of [k = m + 1] can be obtained from different root
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combinations of [k = m], which can be calculated according to the combinations of S and D
components in the diagonalized configuration subspace. Although the above analysis is based
on a special numerical example, the conclusions apply to the cases with β > 0, and 0 < c < 1
as well. In all of these cases the roots of equation (3.1) are real.

Using these properties, we can set up a procedure to find all roots of equation (2.24)
numerically by using MATHEMATICA. Firstly, one can use Solve to get solutions of [k= 1].
Then one can use the combination of roots corresponding to the basis vector S and the
corresponding basis vector D to get all roots of [k= 2]. It is obvious that the roots of [k] are all
different, y1 �= y2 �= · · · �= yk. In this procedure, we always assume that the relatively smaller
roots correspond to the S component, and the larger ones correspond to the D component
in the diagonalized configuration subspace, which can be used as a guideline for finding the
solution. In order to find solutions for [k = 3] from those of [k = 2], for example, a solution
{y1, y2, y3} of [k = 3] corresponding to the basis vector S2D1 can be found by using {x1, x2}
of [k = 2] corresponding to S2 and x of [k = 1] corresponding to D as initial roots. One can
then use FindRoot with these initial roots to get a new solution. Similarly, solutions for [k]
corresponding to the basis vector SrDq with r + q = k can be obtained either from the roots
of [k − 1] corresponding to the basis vector Sr−1Dq and the root of [k = 1] corresponding to
the basis vector S, or from the roots of [k − 1] corresponding to the basis vector SrDq−1 and
the root of [k = 1] corresponding to the basis vector D, as initial roots.

4. Complete solutions of the U(4) vibron model

In this section, we will use the results outlined in the previous two sections to discuss the
sp-boson system, of which limiting cases were discussed thoroughly in [6–8]. There are
only two different reductions in this case, U(4)⊃O(4)⊃O(3)⊃O(2) and U(4) ⊃ U(3) ⊃
O(3) ⊃ O(2), with basis vectors denoted as |NσνM〉 and |NnpνM〉, respectively. Because
l = 1, the quantum number L = ν in this case.

In the molecular vibron model the two limiting cases, U(4) ⊃ O(4) ⊃ O(3) ⊃ O(2)

and U(4) ⊃ U(3) ⊃ O(3) ⊃ O(2), correspond to rigid and non-rigid situations, respectively.
However, the rigid and non-rigid cases are two idealized limits. In the real world no molecule
is absolutely rigid or non-rigid. If the O(4) and U(3) limiting cases are regarded as the
rigid phase and non-rigid phase, respectively, the O(4) ←→ U(3) transitional region is
where the two phases coexist. Within the framework of the vibron model, the vibrational–
rotational modes of diatomic molecules are described by a O(4) ←→ U(3) transitional
Hamiltonian. The parameter c in equation (3.1) is called the phase parameter since the c = 1
case corresponds to the O(4) limit, while the c = 0 case corresponds to the U(3) limit.
Firstly, we can calculate the energy spectrum of the model with the fixed phase parameter c. In
table 2, the Bethe ansatz solutions of an example with N = 6, c = 0.2, α = 1000, g = 1,
cp = 1 are given.

Because L = ν, the two terms ν(ν + 2l − 1) and L(L + 1) in (2.25) can be merged
into one with a new parameter η = γ + δ. Using solutions of Bethe ansatz, one can get the
eigen-energies and the corresponding wavefunctions. Tables 3 and 4 show eigen-energies
with η = 0 and η = 100, respectively, while other parameters are the same as those used in
table 2. In these two tables the notation νζ is used to label energy levels, while ν is the angular
momentum quantum number, and ζ is used to distinguish from different levels with the same
other quantum numbers and different solutions of equation (3.1).

In the following we fix the parameter η = 100, and allow the phase parameter c to vary
within the closed interval [0, 1]. Other parameters are the same as those used in table 2.
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Table 2. Solutions of (3.1) with N = 6, c = 0.2, α = 1000, g = 1, cp = 1.

Configuration

ν k y
(ζ)
i (i = 1, 2, . . . , k; ζ = 1, 2, . . . , k + 1) SqPr (q + r = k)

0 3 (1)24.8628, 24.9556, 24.9953 S3P0

(2)24.9323, 24.9932, 0.998 502 S2P1

(3)24.9876, 0.995 934, 0.999 083, S1P2

(4)0.993 011, 0.997 211, 0.999 336 S0P3

1 2 (1)24.8986, 24.9771 S2P0

(2)24.9627, 0.997 506 S1P1

(3)0.994 655, 0.998 376 S1P2

2 2 (1)24.9323, 24.9932 S2P0

(2)24.9876, 0.996 512 S1P1

(3)0.993 418, 0.997 631 S1P2

3 1 (1)24.9627 S1P0

(2)0.995 52 S0P1

4 1 (1)24.9876 S1P0

(2)0.994 53 S0P1

Table 3. Eigen-energies E (in arbitrary units) with c = 0.2 and η = 0.

νζ 01 02 03 04 11 12 13

E 0 961.321 1924.72 2890.2 479.901 1442.26 2406.7

νζ 21 22 23 31 32 41 42

E 959.821 1923.22 2888.7 1439.76 2404.2 1919.72 2885.2

Table 4. Eigen-energies E (in arbitrary units) with c = 0.2 and η = 100.

νζ 01 02 03 04 11 12 13

E 0 961.321 1924.72 2890.2 679.901 1642.26 2606.7

νζ 21 22 23 31 32 41 42

E 1559.821 2523.22 3488.7 2639.76 3604.2 3919.72 4885.2

Numerical results for eigen-energies are shown in table 5. The transitional spectrum from
one phase to the other for the phase parameter c varying within the closed interval [0, 1] is
shown in figure 1. It can be seen from figure 1 that level degeneracy occurs when c takes some
special values, especially when c = 0.7–0.8. The degeneracy seems accidental. However, the
system must have special symmetry at these special points corresponding to the accidental
degeneracy. Possible connection to the E(2l + 1) symmetry [23–25], which is related to a
special symmetry in the U(2l + 1) ↔ SO(2l + 2) transitional region discussed in this paper,
needs to be further explored.

One can also investigate the influence on the eigen-energies of other parameters. For
example, in order to show how the eigen-energies vary with the parameter β within the whole
range of the phase parameter c, the energy surface E(c, β) with the other parameters fixed
can be defined and calculated using our procedure. In figure 2 the energy surfaces, E1−1 (c, β),
E2+

1
(c, β), E3−1 (c, β), E4+

1
(c, β) are shown, where other fixed parameters are N = 6, g = 1,

cp = 1 and η = 100. From these figures, it is clear that the transition from U(3) to O(4) is
second order phase transitional.
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Figure 1. Some low-lying energy levels of the vibron model in the whole transitional region with
N = 6, β = 1000, η = 100, where phase parameter c = 0 corresponds to the U(3) limit, and
c = 1 to the O(4) limit.

Table 5. Low-lying energy levels (in arbitrary units) with different phase parameter c in the vibron
model.

c E(01) E(02) E(03) E(04) E(11) E(12) E(13)

0.0 0 1001.5 2005 3010.5 700 1702.5 2707
0.1 0 991.455 1984.94 2980.43 694.975 1687.45 2681.93
0.2 0 961.32 1924.72 2890.2 679.9 1642.26 2606.7
0.3 0 911.1 1824.38 2739.83 654.78 1566.97 2481.33
0.4 0 840.78 1683.88 2529.3 619.6 1461.54 2305.8
0.5 0 750.38 1503.26 2258.63 574.38 1326.01 2080.13
0.6 0 639.89 1282.5 1927.81 519.1 1160.35 1804.32
0.7 0 509.31 1021.59 1536.84 453.78 964.58 1478.35
0.8 0 358.63 720.56 1085.73 378.4 738.68 1102.24
0.9 0 187.89 379.42 574.49 292.97 482.69 676.01
1.0 0 6 10 12 200 206 210

c E(21) E(22) E(23) E(31) E(32) E(41) E(42)

0.0 1600 2603.5 3609 2700 3704.5 4000 5005.5
0.1 1589.96 2583.44 3578.93 2684.94 3679.43 3979.93 4975.43
0.2 1559.82 2523.22 3488.7 2639.76 3604.2 3919.72 4885.2
0.3 1509.6 2422.88 3338.33 2564.46 3478.83 3819.37 4734.83
0.4 1439.28 2282.38 3127.8 2459.04 3303.3 3678.88 4524.3
0.5 1348.88 2101.76 2857.13 2323.5 3077.63 3498.25 4253.63
0.6 1238.38 1880.99 2526.31 2157.85 2801.81 3277.49 3922.81
0.7 1107.8 1620.09 2135.34 1962.07 2475.85 3016.58 3531.84
0.8 957.12 1319.05 1684.23 1736.17 2099.73 2715.54 3080.73
0.9 786.36 977.9 1172.99 1480.16 1673.5 2374.36 2569.48
1.0 600 606 610 1200 1206 2000 2006
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Figure 2. Some low-lying energy surfaces (in arbitrary units) in the two-phase coexistence region.
(a) Energy surface of 1−1 , (b) energy surface of 2+

1 , (c) energy surface of 3−1 and (d) energy surface
of 4+

1 .

5. Conclusion

In this paper, the interacting sl-boson system in the U(2l + 1) ←→ O(2l + 2) transitional
region is exactly solved. The total numbers of bosons and angular momentum were considered
to be conserved quantities and only one- and two-body interactions were included in the
Hamiltonian. To find exact solutions of the problem, an algebraic Bethe ansatz was introduced.
In order to determine the functionals S+(xi) and allowed values of the spectral parameters xi ,
an infinite-dimensional Lie algebraic method was introduced, which can be used to determine
the functionals S+(xi) as well as the Bethe ansatz equations, of which the solutions provide
the allowed values of these spectral parameters. Physical quantities, such as eigen-energies
and their corresponding wavefunctions can be evaluated in terms of these spectral parameters.

In order to make the procedure practical for realistic applications, a numerical algorithm
for solving the Bethe ansatz equations was introduced. Specifically, FindRoot of the
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MATHEMATICA package can be invoked to find the roots of the non-linear equation. As
an example, some energy spectra for the U(3) ←→ O(4) transitional region of the U(4)

vibron model were studied. As the results demonstrated, the procedure should be useful in
studying transitonal situations in the vibrational–rotational modes in molecules and α-cluster
excitations in nuclei. Although the eigenvalue problem studied in this paper can also be
solved easily by the direct diagonalization procedure, the method outlined in this paper should
be useful for other quantum many-body problems, in which numerical diagonalization will
become infeasible.
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